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SUMMARY

The objective of this program 1s to investigate surface-patch
modeling and to develop a user-oriented computer algorithm for analyzing
general three-dimensional radiation and scattering problems with arbitrary
surface geometries for airborne/ground-based applications. The existing i
surface-patch algorithm was improved and tested on prolate spheroids,
circular and rectangular cylinders, and boxes. Good numerical results
were obtained even for geometries with sharp edges. The merits of the
surface-patch approach in solving electromagnetic problems of arbitrary
geometries have been demonstrated for conducting bodies whose dimensions
are not electrically large. 1Its advantages as well as disadvantages in
comparison with the wire-grid approach were also discussed. Development
of a new surface-patch algorithm was started with a reaction integral
equation. This approach required intolerably large computer time in
the integration process involved in the matrix computation. The

electric field integral equation was then used to overcome this problem.
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SECTION 1
INTRODUCTIUN

There are presently two types of approaches that have been employed
to treat the scattering and radiation of arbitrarily-shaped conducting
bodies that are not electrically large. The first is to simulate the
conducting surface with thin wire grids and the second is to approximate
surface with patches. Research in the wire-grid approach has been very
active, yet c(omparatively little effort has been devoted to the surface
patch approach, Surface-patch modeling of arbitrarily-shaped dies has
investigated by Oshiro, et al. [1,2], Albertsen, et al [3’ 4 Wang
(4].

The objectives of this research program are to investigate surface-
patch modeling and to develop user-oriented computer programs for
analyzing general three-dimensional radiation and scattering problems
with arbitrary surface geometries for airborne and ground-based
applications., The tasks include the evaluation and improvement of the
existing Georgia Tech algorithm and the development of computer programs
for thin-shell and antenna problems. This interim report summarizes the
accomplishments during the first year of this two-year research program.

The algorithm improvement was primarily directed toward the
reduction of execution time and the amount of central memory required in
the numerical computation. Numerical testing was carried out for
prolate spheroids, circular cylinders and rectangular cylinders (boxes)
in order to determine the accuracy of the algorithm, Also, a computer
program employing the electric field integral equation was developed to
treat thin-shell problems which can not be computed using the existing
Georgia Tech algorithm,

the
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SECTION I1
EVALUATION AND IMPROVEMENT OF EXISTING ALGORITHM

A. Basic Formulation !

The existing computer program at Georgia Tech, as discussed in
Reference 4, employs a magnetic field integral equation (MFIE) as

follows

-5 — 2n

I@® = 5 ﬁx)(.ls(z') x V'¢ (r,x')ds’

= Zt;x_ﬂlnc(_g) for resS (1)

where gs = gurface current density on the surface S,
n = an outward unit vector normal to S,
¢ = [exp(-3k|r - ' DI/} x-2"], !
r, r' = vectors from the origin to the field and source points, i
g_"c = incident magnetic field intensity, 1

J{T = principal value integral, and

v = gradient operator with respect to the primed coordinates.

For the convenience of the present discussion, it is desirable to
review the matrix generation process involved. We define the operator L

as

1 .
L (x) = 3 () - —5-n ][s J (x')x V'éds'. (2)

* We now let

(x), (3)

h-‘L---—d—-—-——-..._.___..___.__ . _.MM,_______*‘A”_‘__J




1, 1 2_ 2
=1°P ")+ 1P (D),

JERCIERS
Pi(r) = Ui for reAS
-n - -n ~"""n

# 0 elsewhere,

where U ! and U 2 are orthonormal unit vectors on AS_defined by
~n -n n
L A xR
1§ "= —
-n I A X‘Elnc(z)l
v?=3 yul
-n n * —n

and the scalar product as
<{pP,Q> = ,/-2 * Q ds,
s

Thus, by applying the weighting function to Equation (8), we have

(4)

(5)

(6)

(7

(8)

(9)

(10)



X {gnjx ][ V'¢(5m,_1;')ds'} . (11)
Asn

The magnetic field integral Equation (1) can be used to generate a
system of linear equations by expanding the unknown surface current is
according to Equation (3) and performing the scalar product according to

Equation (11). The resulting system of linear equations can then be

denoted by
2 N
s T O R (12)
n mn m
j=1 n=1l
m =1,...N
i =1,2 ’
where

i3 _ i h]
2 7 =<K @, LR (1>

vioo=<H @, 28 x BT

To solve for the unknown surface current Ini, one must first
compute the matrix element Z;i which involves an integration process
according to Equation (11). The existing Georgia Tech computer
algorithm is based upon the formulation which is summarized in the
preceding equations. The methods of evaluation of the matrix elements
and matrix solution, together with the techniques which have been
developed to improve the computer algoirthm will be discussed in the

following paragraphs.

B. Matrix Symmetry

Execution time and central memory size are primary considerations

in the present analysis. It is desirable to explore the possibility of

PrewTe




attaining a symmetrical property for the square matrix Z;i « A

symmetrical matrix requires only about half the execution time and
central memory as does an unsymmetrical matrix, Thus, symmetry will
make it possible to compute the EM field for scattering and radiating
bodies of larger size,

The square matrix Z;i can be arranged in the following form

11 12
(Zm n ] [zm n )
2 13, (13)
[Zan 17,212 , 22 ,
(2,701 12,771
which consists of four sub-matrices each of which has a NxN dimension,
Letting
K = m+ (i~1)N, (14)
£ =n+ (J-1)N, (15)
we have
¢ - z13, (16)
2 mn
For [Z;i] to be symmetrical, it is necegsary, by definition,
that
K )
€ =% (17)
or
i) K L
zm n Cl CK (18)
= Z it .
nm
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Substitution of Equation (11) into Equation (18) yields

ymi . ﬁm X {gnjx ][ v'e (;m._r_')ds')

i ~ 3 f ' [
=U " onX {gm X A v'e (In’i )ds'} (19)
m

which is the condition for a symmetrical matrix [Z;i] « In general,
Equation (19) can not be satisfled and therefore symmetry for the matrix
can not be readily achieved.

Galerkin's method, which chooses identical sets of basis and weighting
functions, is more likely to yield symmetrical matrices. In the present
case, this can be explored by selecting equal patch sizes and weighting

functions as follows

i _,1 (20)
Em(g) _lim(g).
The condition for matrix symmetry in this case is
Ui- ﬁ X {Uj X V'¢(r,r')ds'ds}
™o T JAsy JAS, 0
(21)
=udon x ol V'o(r,r')ds'
Mm. n —m ¢(r,xr')ds'ds},
850 Jasm
which can be reduced to
S oo - i
I N (22)




or
3.ty -t ul+6{ -0t (23)
U,y 1 e “m" -n

Unfortunately, Equation (23) can not be satisfied on a general three-

dimensional surface., If we let

12 =0 forn=1,

n

.. N (24)

in Equation (4), Equation (23) is reduced to

(25)

Ul g
This 1s similar to wire-grid modeling, in which the direction of the
current is along the pre-determined wire structure, The condition
stated by Equation (25) is still too restrictive to be satisfied on a
general closed surface.

The above discussion can also be reviewed on the basis of linear
algebra, which attributes the symmetry of the matrix to the self-
conjugate property of the linear operator L, [5]. As long as one selects
an orthonormal basis for a space, then self-conjugate operators are in a
natural one-to-one correspondence with symmetrical matrices., The
difficulty in attaining matrix symmetry therefore appears to be due to
the magnetic field integral equation for which the operator L is not

self-conjugate, It is therefore necessary to modify the operator L , or

the magnetic field integral equations, before a further step to attain
matrix symmetry i{s attempted.

In the wire scattering and radiation analysis, apparently the only
algorithm having a symmetrical matrix is the reaction integral equation
developed by Richmond [6]. The original operator was not self-conjugate
and the matrix therefore asymmetric. However, by approximating the

" AT At
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surface integral over the tubular expansion dipole with a line integral,
the matrix element, or the mutual impedance between two dipoles, was
made symmetrical., Other computer programs do not have a symmetrical
matrix in their computation, However, matrix reduction for
geometrically symmetrical scatterers and radiators has been recognized
and practiced such as in the WAMP program [7), the work by Sancer, et al.
[8), and Tsai, et al. [9]. In the present algorithm, matrix reduction
for a symmetrical scatterer was implemented and will be discussed next

in this section,

C. Symmetrical Scatterers

When the direction of propagation of an incident plane wave is in
the plane of symmetry of a conducting scatterer, it is recognized that
some symmetric behavior must exist in the induced current on the surface
of the scatterer, This property has been taken advantage of by various
authors in their effort to reduce the central memory size required in
the computer run [7-9].

Without loss of generality, Cartesian coordinates can be set up so
that the plane of symmetry coincides with the XZ plane as shown in
Figure 1, The polarization of the incident wave is assumed to be either
parallel or perpendicular to the XZ plane, Arbitrary polarizations can
be decomposed into two components, one parallel and the other

perpendicular to the XZ plane, The overall scattering problem can then

‘be treated by superposing the fields due to these two component incident

fields,
At two symmetrical points I and I+N/2 in Figure 1, the components

of the induced surface currents exhibit the following relationships

Jix = Ji:N/Z ’

Jiy = —JiZN/Z ’

" - Jiiu/z ’ (26)
Jix = -Ji:N/Z ’

Jiy - Jiin/z ’

JZZ 2z

' e TP
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when Ei is perpendicular to the plane of symmetry (XZ plane). In

1

Equation (26), Jix denotes, for example, the x component of Illgn
Equation (4).

When Ei is parallel to the plane of symmetry, the induced current

on the scatterer has the following property

Jix = _Ji:N/Z ’

Jiy - JiiN/Z ’

Jiz = 'Jiiu/z ’ Q7
Jix = Ji:N/Z ’

Jiy - 'JiiN/z ’

Jiz = JiiN/Z

Equations (26) and (27) show that the number of unknowns in
Equation (12) can be reduced from a total of 2N to N, This can be

carried out by the following reduction process

2, 2.
A % 3 1] 3 1]
Z Z In Zmn Z In z + 2 Z I!‘l Zmn

n=N/2 + 1 j=1

N/2 2%
- {43 1]
a=1 ;Ei ‘n [Zm“ " m(“+N/2J '
13 el I, pl
where YA m(n+N/$,‘ <‘_Jm (E)v L[EIP Eﬂ (E) ]>» (29)

J
where glp is a dyad defined as

10
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cjp e (e UD oy IeHitloe gy IPFIF2ee Ip+j+3.-

=1 yy + (-1) }
(30)
i
Ip =1 1if H" // x-z plane
=2 |if Ei 1 x-z plane
Equation (12) can now be written as
N/2 .
i o,13 1] i
2 1Mz +z 1=V . (31)
&1 n "“mn n{n+N/2) m i 1,2

m=1,...N/2

The total number of equations is then reduced to one half of the

original number and the matrix size to one fourth of the original size,

D. Matrix Computation

The matrix element Z;i , according to Equations (11) and (12),
involves an integral of the following form

m= [] . t d' (32)
1 fAsn”‘Em x') ds’,

Computation of the integral l: is very time consuming 1f carried out

numerically., However, it has been observed that

m ' (33)
ln AR AN (Em' En) ASn,

where I 1is the position vector to the center of the nth patch and AS,

is its area. The approximation in Equation (33) improves as the shape

of the nth patch approaches an equiangular triangle.

11




Figure 2 shows, without loss of generality, the nth triangular
patch coincidng with the X'-Y' plane, one vertex on Y' axis, and the
opposite side on X' axis., The integrand can be simplified by the
following approximation

-ijmn
@ (Em’ l") v e [1-jk (R_Rmn)]/Rv (34)

Jkr

which is a two-term Taylor expansion of e in the neighborhood of

R , where R = Ir - r'| , R
mn -m - mn

of Equation (34) depends on the following condition

=’|£m - £ﬂ| as in Figure 3. The validity

k lR-R I << 1‘ (35)
“mn

Since the patch size is limited to, say, M3 or less on each side of the

triangle, it is generally true that

k |[R-R__| <1 (36)
mn

Y

It can be shown that the self patch integral lﬂn vanishes when the
patch is equilateral and small enough to satisfy Equation (35).

Therefore

t=]
i

0 37

In proving Equation (37), it was noted that Equation (35) was well
satisfied in the immediate vicinity of Rmn' where ]R.- an| ~ | R| ~ o0,
When m:£n, two separate patches are involved, the integral lé“
becomes considerably more complicated but can be approximated in closed

form as follows

-JkR . .
m T+ y'1 ),
1% (1 + ijm) e {x'I_+y ¥

12
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where

1 2x!
I = 5 1n [(""‘5)2 + y2 + zz + (—? (x-x:z)-2y) yi
X 1+ (x'2> 1
v -
"
2xé
x2\2 x'\2 1/2  —F (x-x!) -2y
+ ((2)+1 y'2]1/2+y'[1+ -2 + 2
2 1+ (-x—z)
L
Y1
2

xl

"2 (x—x‘,'z)—Zy
2 2 2 y.
In [(x—xz) +y"+ 2" + 1

1

l+x'2 l-i-xé2
) vV G
Y1

y1

1 2x!
—_— 2 2 2 1
- 1n [(x+xi) +y +2z" + (———y, (x + xi)—Zy)yl

/ 12 1
1 +(§l)
L
Yy

w2

) l )
Xy 12.1/2 ' (xl 5T (x + xl) -2y
+((;i—) +1)yl] +yl[1+q]+ 1
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1 —y'

1 vy
1 =——1In {[(y—yi)2 + x + 2211/2 + ;I (y-yp)-x

- 2 1
- 1n {[(Y‘Yi)z + x2 + z +(T'1 (y-y'l) + 2x) X

(40)

= (y-y}) -x
+ N ! }o-ln {(x% +y

1+ <yi)2
-
*1

2 12 _

+ 22]

14




+ In {[x2 + y2 + z2 + 2xx! + x'z]l/2 -x! -x}
1 1 1
1 2y!
+ —1n {[()'-)"l)2 +xl 4204 (—;}- (y-y}) -Zx) x'2
v \2 2
1+ yl
&)
2 s
2 1
Yy, : = (y-y!) -x
+ {1 +{-L x"z]l/2+x' 1+ ]1/2 X, i
X 2 2 Xy
L4yl
)

y
1
= (y-y}) -x
- 7 "In {[(y-yi)2 + x2 + 22 ]1/2 + %2 1 }
2

\/73 )

X

- 1n {[x2 + y2 + z2 - 2xx! + x'z]l/2 + x! - x 1}
2 2 2
+ 1n {[x2 + y2 + 22] -x} ,
15

bl




Figure 2. A triangular patch and the coordinates.
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Figure 3. Geometry of the mth and the nth patches.
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where x,y,z denote X Yoo 2o respectively.

Although Equation (38) is an accurate expression for the
computation of lﬂn, it is quite cumbersome. In practice, the simple
expression of Equation (33) is quite satisfactory. In fact, all the
numerical data included in this report are based on Equation {(33). The
CPU time required in generating the matrix elements is small, being on
the order of 100 seconds for a 192x193 matrix on the CDC CYBER 74

computer at Georgia Tech.

E., Interior Resonance

Interior resonance in electromagnetic scattering has been observed
in two types of problems, one due to the simulation by wire—grids
(10,11}, the other being related to the integral equation used. In both
cases, the solution to an integral equation is not unique at the
resonance frequency of the interior cavity. Thus, a solution to the
interior problem emerges while the exterior problem is being solved.

The latter type of resonance was discussed in detall by Poggilo, et
al, [12]. A similar phenomenon in acoustics was analyzed by Copley [13]
and Schenck [14]. Copley showed that the integral representation of the
velocity potential contained the product of 1/(k—km) and a surface
integral, where k is the free space wavenumber and km an eigen-value of
the interior problem. As (k-km) approaches zero, the surface integral
must also vanish so that their product will yield a finite value for the
velocity potential., Consequently, it becomes increasingly difficult to
calculate accurately the ratio of two vanishing quantities as k
approaches km. Since the accuracy of the computer is limited, numerical
inaccuracy will arise at the resonant frequency,.

In electromagnetics, a similar mechanism was noted in various
integral equation formulations [12,15,16,17], Harrington [16,17] stated
that both electric-field and magnetic-field integral equations failed at
frequencies corresponding to the resonant frequencies of the interior
problem. The present algorithms employ the magnetic field integral
equation and are therefore expected to exhibit difficulties at the

interior resonance frequencles. In fact, a careful search near the

18




first eigen frequency of a sphere of radius "a" located at ka=2,744
revealed an erratic behavior in the calculated backscatter cross—sectlion
around the value of ka=2,89, as shown in Figure 4,

The distinctive feature of the internal resonance in Figure 4 is
the rapidity and sharpness of the variation of the radar cross-section

versus frequency. Because of the slight frequency shift and the

narrowness of the resonance bandwidth, this rescnance escaped an earlfer
inquiry into this phenomenon. Although the resonance has shifted, the
radar cross-section curve off resonance does not show any significant
shift one way or the other. Therefore, this shift of resonance can not
be explained as being due to the effective size of the sphere
simulation, It is probably due to the surface-patch algorithm, which
may be less sensitive to resonance phenomena than other algorithms.

It is now clear that internal resonance presents a numerical
problem in the present algorithm over a narrow bandwidth near the
resonance frequency. Correctlon of this deficiency can be carried out
by following either of the two approaches outlined by Mautz and
Harrington [16,17]. These methods involve the use of a modified

integral equation, the combined field or the combined source, for which

the solution is unique.

F. The Basis and Welghting Functions

The basis function used in the present approach was defined in

Equations (3) through (7). It is natural to ask whether other basis

y functions can be used to any advantage. For example, it is sometimes

possible to orient all the basis vectors perpendicular to a fixed
coordinate axis instead of the incident wave polarization. This was
tried for the case of spheres with a surprising result. The output data
are nearly identical whether the basis vectors are oriented according to
the incidence polarization or a fixed coordinate, No other geometry was
tested because of the difficulty in defining a basis vector
perpendicular to both the surface normal vector and the fixed
coordinate, We have not been able to obtain a satisfactory explanation

for this discovery during our brief examination of this problem.
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Basis functions other than the subsectional pulse function have
been considered in the present study. These alternate basis functions
included the triangular and sinusoidal pyramid functions., The
possibility of extending these subsectional bases over more than one
patch was also considered. Since the current is continuous for a
conducting body having aclosed surface, the triangular and sinusoidal
pyramid bases must be extended to cover more than one patch in order to
achieve continuity for the current,

Figure 5 shows a triangular pyramid basis function peaked at the
center of the bisectors of the center patch. Assuming that all the
patches are organized to share one side with each of the three adjacent
triangles, we can establish a basis function which is centered in each
patch and declines to zero at the centers of the adjacent patches. Note
that the shaded and unshaded triangular pyramids in Figure 5 only
represent the magnitude of the current, not its polarization,

One problem with the shaded basis function from the shaded to the
unshaded pyramid in Figure 5 is that the current is zero on the vertices
of the triangular patch. It is therefore desirable to modify the basis
function by extending it from 2, 3, 4, to 2', 3', and 4', respectively.
The decay of the basis function from 1 to 2, 3, and 4, (or 2', 3', and
4') can be changed from linear to sinusoidal if it offers any
computational advantages.

The weighting function used in the present approach is the Dirac-
delta function according to Equation (9), If a flat pulse function is

used, the matrix element is then given by

1]
mn

,l--

28 = as s7. 6t -
mam

~N

n l{i ';m x A gfl\ xﬁs [_/‘;S v'é(r,r'jds']ds}
m n (41)
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Equation (41) now involves a double integration. The integration with

respect to s' can be approximately expressed in closed form according to

Equations (38) - (40). The next step, integration with respect to s,

appears difficult and must be computed numerically,

The Dirac-delta function can be used as a weighting function for

the triangular pyramid basis function. In fact, six out of the seven

major wire analysis programs use Dirac-delta functions as the weighting

function and this method is referred to as collocation [18].

In this

manner, the complexity of the triangular pyramid basis function can be

drastically reduced.
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SECTION III
NUMERICAL TESTING

Based on the study described in the preceeding section, two
computer programs, SCT51 and SCT52, were developed for numerical
testing. These two computer programs have been described in a separate
document [19] and thus their descriptions will not be repeated herein,
The program SCT51 applies to arbitrarily-shaped scatterers without
matrix integration and the program SCT52 applies to symmetrical
scatterers with the incident wave propagating along the plane of
symmetry,

Numerical computations have been performed previously for
conducting spheres of various sizes [4]. Thus, it is of interest to
consider other geometries and the scatterers studied in this report
include prolate spheroids and finite length circular cylinders and
rectangular cylinders. The results of the computations were then
compared with existing data in the literature. While excellent
agreement between the data and the computations has been observed, there
was an apparent discrepancy with respect to polarization in some of the
cases which were considered. Namely, our TE (Transverse Electric)
calculation may agree with known data of TM (Transverse Magnetic) case,
and our TM case may agree with the known TE data in the literature. In
fact, our results agree with some sources and disagree with some other
sources as far as the incidence polarization is concerned., We have
examined the set-up of the incidence wave in our computer program and
have not found any error. At this point, we tentatively assume that the
discrepancy is due to confusion in data presentation with respect to
denoting the polarization., A further examination of the literature may
resolve this apparent notation problem,

The incidence polarization problem emerged only when it affected
the results. 1In many instances, the geometries are symmetrical and the
scattering characteristics are identical in the two principal planes.
There is also a possibility of error in the definitions of the axes to
which the TE and ™ modes are referred. The axis was defined in all the
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data presented in the literature but this definition could be a
potential source of error.

In order to resolve the polarization problem, a series of
measurements is planned in early 1980 when the compact range at Georgia
Tech will be available for scattering measurements,

With the foregoing discussion in mind, we proceed to present the
numerical results, which when we ignore the discrepancies in
polarization in some cases, are in good agreement with existing data in
the literature,

The computation for prolate spheroids employed a 54-point, 96-patch
spheroidal structure described in Reference 4, which 1s easily elongated
in one dimension to generate the desired prolate spheroid. Figures 6
through 8 show the comparison of the back-scattering cross-—section
resulting from the present calculation and the data from Moffatt, et al.
{20,21]). The minor axis a of the patched prolate spheroid is determined
by its "effective” value, which is calculated by dividing the
circumference by 2.

The backscatter from a finite length circular cylinder was
calculated using the program SCT52 and the results are compared with
data in the literature [22) for E-plane and H-plane incidence. Again
the question of effective diameter of the cylinder arises. Figure 9
shows how the finite circular cylinder was simulated with triangular
patches. Figure 10 shows how the patched cylinder is related to the
circular cylinder. Obviously, a cross-section inscribed on circle 1is a
less reasonable choice than the cross-section area corrected to a
circle. Indeed, better results were obtained by the method of cross-
section area corrected to a circle as shown in Fgures 1l and 12.

Figures 13 and 14 show the comparison of the computed results for a
finite rectangular cylinder with the calculation by Tsai, et al (23,24],
who referred to the rectangular cylinders as boxes. SCT52, which takes
advantage of the symmetry of the problem, was employed in this
calculation., Tsal's calculation also utilized the symmetry of the
scatterer, Note that a 60 x 60 matrix was used in the present

calculation while a 100 x 100 matrix was used by Tsal.

25




Lo

a I~

acs 7t

0.0t

T

4

0.001

INCIDENCE e “axis

— ~ CALCULATED

T SHEATED ) morFarT
—— PRESENT CALCULATION

Figure 6.

Backscattering cross section of a conducting prolate
spheroid with incidence parallel to the major axis.

26

20

30 Ko

A




-
1.0 |—
!
z
[V Y
P
-, INCIDENCE
¢
| e
bl === CALCULATED ‘ WOFFATT
o e MEASURED
C = PRESENT CALCULATION
pe
-
0.001 | ! 1
) 1.0 2.0 39 ke
Figure 7. Backscattering cross section of a conducting

prolate spheroid with
to the major axis --

27

incidence perpendicular
TE polarization.

I




[K¢]
E
o~
INCIDENCE
-~
P
~
[
[}
x
0.0l =

- Z

N —-— cA AT

~ LCULATED 3 orpatT

- e  MEASURED

- e PRESENT CALCULATICN
0.001 1 1

o} 20 30

Ke
Figure 8. Backscattering cross section of a conducting

prolate spheroid with incidence perpendicular .
to the major axis -- TM polarization.
28




ccccccccccc
oy3eIndwod 103 sayoied 1eTnB8uBTII YITm pOIETNUTS ISPUTTAD 3ITUTF IB[NIATD ¥V ‘6 In8T4

g i ——— b E
—— T e s s e e e i

TS

AN




DIAMETER = 0.432 A\

CROSS - SECTION INSCRIBED
ON CIRCLE

CROSS - SECTION AREA
CORRECTED TO CIRCLE

Figure 19. Cross sectional views showing two methods in
handling the effective diameter of the circular
cylinder.

30




aueTd-H 3yl ut

I3pPUTTAD JIB[NDIID 83ITUT] B JO UOT3IDIS S$S0ID Jurldailedsydeg "I[ 2andT1J

(S33Y¥930Q) ©® 319NV 123dSV 3INVId-H

06 08 0L 09 06 Ovy OE 02 Ol O Ol- 02- 0g- Ob- 0G- 09- 0L- 08- 06—~

I I D O D 2N I O R N B D D DD N

e

Y A\

Fr—xor 2z

(910412 O} P@{394103 - DBJD VOIS~ $501)) SNOILVINDTIVI LN3S3Hd @
(813419 U0 PeQLIItU| LD -8E0.3) SNOILYINITIVD LN3ISIHd v

(Y!W 10 N) QIUNSVY3IAN X

{OHIHSO) IVWOILAUOIHL —

Sg-
o¢-
g2~
0z-
Si-
ol-
G-
0

]

(Ol

Sl
o2
T4

o¢

X ©A0g0 gp ‘NQILD3S SSOHD ¥vavy

[4

31




*auerd-g ay3l ur
h@ﬁCwa%u aernodayo 231uT) ® 3O H0o11038 SS010 quhmuumumv_uwm

(S334¥930Q; ® 319NV 103dSV 3INVd4-3

‘g1 9and1d

06 08 0L 09 0S5 OV Of OZ Ol O Ol- 02- OC- Ob- OG- 09- OL- 08- 06~

rr T rrrrrr T T Ty

s

X2¢H hl

.Tal;_ YR

{3DN1D 01 Q3ILI3¥HOI-VY3IYY NOILIIS-SSOUI) SNOLLVINDIVD IN3ISIHd ¢

(’HOIN 40 N) Q3uNSvIN X
(OHIHSO) VIIL3HO3HL —

-

ce-
og-
Ge-
0c-
Sl-
ol-

[

A @A0QD 8P ‘NOILO3S SSOMD ¥vavy

32




LIRBLERA| 1 T 1T 1T VirT)

L]

T ITTrr]

RADAR CROSS SECTION (\%

0l

incident
scattered

e

/

O Present data (60 calis)
J — Theoretical (Tsoi,96 ceils)
A Experimental (Ryan)

.00l | b ol | I\ | —d
A 2 3 4 5 6 N g 8
CUBE SIDE LENGH (\)
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Several salient features were observed in the numerical testing of
the Georgia Tech computer program. The computer program 1s capable of
generating accurate scattering data as long as the patch sizes are such
that the centers of the adjacent triangular patches are spaced a quarter
wavelength or less. Geometries involving sharp angles such as the boxes
and finite circular cylinders can be handled without.degradatton in
accuracy., The computational speed and central memory requirement are
dependent on the number of patches used in the simulation. For a 96~
patch spheroid, which nearly occupies the full central memory of the CDC
Cyber 74 computer at Georgla Tech, one run using SCT51 at a single
frequency and one incidence angle takes about 150 CPU seconds., When
SCT52 is used for a symmetrical geometry, both the central memory and
CPU time 1s reduced by three-fourths.

It is also of interest to compare the numerical advantages of the
surface-patch modeling and the wire-grid modeling approaches., Although
a number of wire-grid algorithms have been developed [18], there appears
to be no calculationswith wire algorithms for the geometries presented in
this report. A wire-grid model for a sphere, originally calculated by
J.H. Richmond, was reported inReference 12. This wire-grid model
employed an earlier algorithm by Richmond, yielding only fair results,

A more critical comparis n was performed at Georgia Tech [4] with
Richmond's latest refined wire algorithm [6). It was shown in this
comparison that the present surface—patch approach was able to produce
data of better accuracy while using fewer linear equations and less
execution time., The wire approach employed 194 equations, and required
a 27-second compilation time and a 237-second execution time, The
surface-patch approach employed 192 equations, and required a 8-second
compilation time and a 150-second execution time, However, Richmond's
reaction integral equation approach has one major advantage. Its matrix
is symmetrical and as a result its central memory requirement is only
about 60 percent of that for the surface-patch algorithm, This
advantage of the reaction integral equation algorithm is apparently not
shared by other wire algorithms and was not mentioned in the detailed

comparison study of various wire-grid approaches [18],
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SCT52, the surface-patch algorithm for symmetrical scatterers,
reduces the execution time and central memory requirements by 75
percent, When there is two-plane symmetry, this reduction is 94 percent,
Thus, for the sphere, in which two-plane symmetry exists, the exectuion
time is 9 seconds and the central memory size will be one sixteenth of
that required by SCT51 or one-eighth of that required by Richmond's wire
algorichm,

No comparison has been made between wire algorithms and the surface-
patch algorithms for geometries other than the sphere. The accuracy and
convergence of the surface-patch algorithm discussed herein surpass
those of the wire algorithms so that a detailed comparison with wire
algorithms is not of high priority in the research program. The effort
in generating correct data for various geometries using the wire
approach 1s estimated at one to two person-months. There will also be
the question of what size of diameter to choose for the wires and how :
these wires should be organized in the simulation., The fact that the
scattering characteristics depend on the wire radius to be chosen has
already seriously hindered the wire—grid approach for surface modeling.
Now that the surface—patch approach has demonstrated its accuracy for
several important types of scatterers, including some with sharp edges,
the advantages of the surface-patch approach over the wire-gird

approaches are evident,
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SECTION 1V
DEVELOPMENT OF A COMPUTER PROGRAM FOR THIN-SHELL PROBLEMS

It is well known that the magnetic field integral equation
encounters numerical instability problems when used for thin-shell
scatterers [25]). This difficulty can be overcome by using the reaction
integral equation [26] and electric field integral equation [27] or
others [25,28,29], However, computations in the literature invariably
are limited to the simple case of a rectangular conducting plate and a
dihedral corner reflector. There is no indication that any of these
methods can be readily applied to other geometries,

In the process of developing a computer program for the scattering
of arbitrarily-shaped thin shell structures, two approaches were taken
in this study. A reaction integral equation approach was initially
investigated but was not completed because of large CPU time
requirements in the numerical computation of matrix elements. An
electric field integral equation approach was then adopted and a
computer program coded and debugged. Both of these approaches are

discussed in the following paragraphs.

A, Reaction Integral Equation Approach

The reaction integral equation has been applied to the cases of a
rectangular plate and a dihedral corner reflector {26]). The possibility
of using this approach for arbitrarily-shaped scatterers is examined
herein. The major difficulty in this approach i1ies in the difficulties

in the integration to obtain the matrix elements given by

i _ i, 53 400 42)
Zmn -];Sm '/A-Sn :lm E'n ds'ds

where i. basis function of 1th polarization in the mth patch,

J
=
Eﬂj = electric field due to the basis function of ith polarization

in the nth patch,

ASm,ASn = gurfaces of the mth and nth triangular patches.
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Strictly speaking, Equation (42) involves triple integrations as
Eﬂj must also be evaluated by an integration process. Presently, there
appears to be no closed-form expression for the field due to a
triangular current patch., Even in the case of a finite line source, the
sinusoidally excited dipole is probably the only one with a simple
closed-form expression for the near-zone field [6]. In order to compute
Enj in Equation (42), two integration methods were tried, The first
method employs modern numerical integration techniques, and the second
method is based on the approximation of the surface current with several
line current elements,

In the numerical integration technique, the definite integral is
expanded into a finite series which can be computed numerically [30].
Specifically, the integration of a function over a triangular area can
be carried out with a 64-point formula [30]. 64 points in the triangle
are pre-selected according to a simple arithmatic formula and the values
of the integrand at these points are then computed. The value of the
integral is then obtained by summing up the product of these 64 sampled
integrands and a predetermined weighting function of simple arithmatic
form,

The accuracy of the numerical integration depends on how rapidly
and how frequently the value of the integrand varies in the area of
integration, The 64-point algorithm was checked with several known
functions and the accuracy of this algorithm was quite impressive, For
example, Table I shows the comparison between the exact values and the

results of numerical integration for the integral

/‘l fl—x (43)
0 0 sinwxdydx.

As can be seen, even when w=10, the 64-point algorithm is highly
accurate,

Although this integration algorithm is highly accurate, it is
inefficient. The total subroutine contains only 17 lines of short and
simple arithmetic expressions, as well as an 8x8 "DO" loop. It takes

about 0,08 CPU second to run one case in Table I, Consequently,
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TABLY 1

ACCURACY OF THE 64-POINT NUMERICAL INTEGRATION ALGORITHM

Integral tested = Lofl-x
0 0 sin wx dy dx.

w Exact Numerical integration
0 0 0

1 0.1585290152 0.1585290

10 0.1054402111 0.1054402

100 0.0100506366 0.05372281

1000 0.0009991731 -0.008012371
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Figure 15. An arbitrary triangular current patch being
approximated with orthogonal current filaments.
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considerable restraint must be exercised in applying this technique to
the evaluation of matrix elements in Equation (42). Since we were
unable to obtain a closed form expression for Enj in Equation (42)
analytically, we chose to approximate the patch current with current
filaments as shown in Figure 15, Obviously, the higher the number of
filaments included in the process, the more accurate will be the
approximation,

The expressions for the electric field radiated from a line current
having a sinusoidal distribution were well documented by Schelkunoff and
Friis [31]. Because of the symmetry of a straight line current, the
radiated field is constant around the axis of the line current., The

radiated field therefore consists of two components, one parallel to the

current and one perpendicular to the current. There is no ¢ component 1f
a cylindrical coordinate is assigned with the current along the z-axis.
A check of the formulas for Ep and Ezshowed that Ep was an exact
expression. However, the expression for Ez was not exact as implied.

In Equations (12) through (40) of Reference 31, the term
1 31 3y

]
jwe 3z' a3z' dz (44)

was omitted in the derivation, The exact expression should read

2
I N I D G
e, = - <;;¥-+ 35 aot B w) 1(z')dz (45)

It was noted that Equation (45) without the term of Equation (44)
is Pocklington's integral equation [32]. On the other hand, Equation
(45) was employed by Kyle {33), Richmond {34], Harrington [35], and
Thiele [36] in their thin~wire computations. In the present study,
Pocklington's integral was chosen so that all the formulations for a
line current source were based on Reference 3l.

Figure 16 shows a comparison between the present calculation and
the calculated data in Reference 26 for the mutual impedance between two

rectangular dipoles. The present calculation employed three filament

approximations for triangular surface patches. Each rectangular patch
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Figure 16. Comparison of computed mutual impedances between

two rectangular dipoles.
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was divided diagonally into two triangular patches. The agreement with
data of Wang, Richmond, and Gilbreath [26] was good as long as the
dipoles are spaced one quarter wavelength away, For closely spaced
dipoles, more current filaments are needed in the approximation.

This combined analytical-numerical method made it possible to
reduce drastically the computational time required for the matrix
element to about 1/20 of the time needed for the previous numerical
integration. However, the requirement for computational time was still
prohibitively high. There appears to be no readily available technique
to reduce the CPU time to an acceptable level. The course of research

was then turned to the electric field integral equation approach,

B, Electric Field Integral Equation Approach

The electric field integral equation usually takes the following
form [12]

. . - 2

n x _E_mc(g) = An}we n x f;{—w euis(g')tt»(g,g’)

+ [V (29 ¢(x,x')} ds' (46)
S -s -

where most of notations have been defined in Equation (1) and

i
E nc(g) = incident electric field,

~

tl , t2 are two orthonormal unit vectors on the surface S.

We denote the right-hand side of Equation (46) with an operator form

X(iﬁ(g')) and rewrite Equation (46) as

x(J_(x") = n x EI"(r) (47)
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We then expand the surface current gs(g') according to Equations
(3) through (7) and employ the method of moments [35] by performing the
scalar product according to Equations (9) and (10), The resulting

system of linear equations is
2 N

j i3 _ - inc .yl (48)
I¥ A = n_ X L (r )-U
m -~ —-m m
j=1 n-1 & ™0
i=1,2; m=1,...N,
where for m#n
13 _ 1] ij
Amn Almn * A2mn (49)
ij - 1 i - _ 2 j
lmn  47jwe Zattn ¥ ASn¢ (lm’En) {-w EUEn
. 1 1 -
*oldke 7l g Tt (50)
mn —nnj
ij N 1 i ° ,
A?.mn - Qﬂjwi “m.nm X Asn¢ (Lm’in)(Jk
r
+ e ST (51)
mn —anj —n
for m=n
1 1 —jkr_. < n
Amn = EJE (1-e n) ‘2: (l-éj)(21—3) (52)
m=n J=l




In the foregoing derivation, the surface gradient operator V'  is

approximated by

2
aI:1 Bli In—Ir‘]l 12—1:12
V' J (r') = oot = 1+ ) (53)
n ot 2 r . U 2
ot —nnl —n r 7-U
n —nn< —n

where nl and n2 are the indices for two patches adjacent to n and are
chosen for the evaluation of the gradient of lnl and Inz. Note thac the
accuracy of Equation (53) depends on the local curvature of the surface
S. For a flat plane, Equation (13) is most accurate because the
polarizations of the first basis vectors Eﬂl and Enll are iden;ical; 80
are the polarizations for the second basis vectors yn and Enl . These
relations also hold for patch n2, Eﬂml and L om2 in Equation (53) are
the vectorial distances between the centers of patch n and patches nl
and n2, respectively, as shown in Figure 17,

th triangular patch is an edge, the basis

When one side of the n
vectors on this patch are organized to orient gnl to be perpendicular
to the edge. lﬂl, being perpendicular to the edge, 1s therefore zero in

magnitude., r is reduced to the case in which the area of patch nl is

—nnl

zero. In other words, I runs from the bisecting piont on the edge

side to the center of thenériangle.

A generalized computer program based on the foregoing analysis has
been coded. There are many similarities between the new thin-shell
program and SCT51 program using the magnetic field integral equation.
Numerical testing of the thin-shell computer program will be conducted

and the results will be included in the final report.
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Figure 17. Geometry and basis vectors in the thin-shell surface- N

shell

surface-patch algorithm.
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SECTION V
CONCLUSIONS

Numerical testing for prolate spheroids, and finite circular and
rectangular cylinders has demonstrated that the surface patch algorithms
are efficient and accurate. These algorithms are also capable of
handling sharp edges In rectangular box and finite cylinders. As
compared with the wire-grid algorithms, the surface patch algorithm is
more efficient with respect to computation speed and exhibits improved
numerical accuracy, but has the disadvantage of unsymmetrical matrices,
Improvements and limitations of this algorithm have also been discussed,
Research efforts on the development of a thin~shell surface-patch
algorithm is also presented. This thin-shell algorithm is being tested

numerically for its accuracy and convergence.
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